Thursday, May 6, 2010

dvd,,,




DVD, also known as Digital Video Disc or Digital Versatile Disc, is an optical disc storage media format, and was invented and developed by Philips, Sony, TOSHIBA, and Time Warner in 1995. Its main uses are video and data storage. DVDs are of the same dimensions as compact discs (CDs), but store more than six times as much data.

Variations of the term DVD often indicate the way data is stored on the discs: DVD-ROM (read only memory) has data that can only be read and not written; DVD-R and DVD+R (recordable) can record data only once, and then function as a DVD-ROM; DVD-RW (re-writable), DVD+RW, and DVD-RAM (random access memory) can all record and erase data multiple times. The wavelength used by standard DVD lasers is 650 nm;[4] thus, the light has a red color.

DVD-Video and DVD-Audio discs refer to properly formatted and structured video and audio content, respectively. Other types of DVDs, including those with video content, may be referred to as DVD Data discs.

CD,,




CD-ROM (pronounced /ˌsiːˌdiːˈrɒm/, an acronym of "compact disc read-only memory") is a pre-pressed compact disc that contains data accessible to, but not writable by, a computer for data storage and music playback, the 1985 “Yellow Book” standard developed by Sony and Philips adapted the format to hold any form of binary data.[1]

CD-ROMs are popularly used to distribute computer software, including games and multimedia applications, though any data can be stored (up to the capacity limit of a disc). Some CDs hold both computer data and audio with the latter capable of being played on a CD player, while data (such as software or digital video) is only usable on a computer (such as ISO 9660 format PC CD-ROMs). These are called enhanced CDs.

Although many people use lowercase letters in this acronym, proper presentation is in all capital letters with a hyphen between CD and ROM. It was also suggested by some,[who?] especially soon after the technology was first released, that CD-ROM was an acronym for "Compact Disc read-only-media", or that it was a more "correct" definition. This was not the intention of the original team who developed the CD-ROM, and common acceptance of the "memory" definition is now almost universal. This is probably in no small part due to the widespread use of other "ROM" acronyms such as Flash-ROMs and EEPROMs where "memory" is usually the correct term.[citation needed]

At the time of the technology's introduction it had far more capacity than computer hard drives common at the time, although the reverse is now true though some experimental descendants of it such as Holographic versatile disc may not have more space than today's biggest hard drive

HaRd DiSk,,



A hard disk drive[2] (often shortened as hard disk,[3] hard drive,[4] or HDD) is a non-volatile storage device that stores digitally encoded data on rapidly rotating rigid (i.e. hard) platters with magnetic surfaces. Strictly speaking, "drive" refers to the motorized mechanical aspect that is distinct from its medium, such as a tape drive and its tape, or a floppy disk drive and its floppy disk. Early HDDs had removable media; however, an HDD today is typically a sealed unit (except for a filtered vent hole to equalize air pressure) with fixed media.[5][6

PeN DrIvE



A USB flash drive consists of a flash memory data storage device integrated with a USB (Universal Serial Bus) 1.1 or 2.0 interface. USB flash drives are typically removable and rewritable, and much smaller than a floppy disk. Most weigh less than 30 g (1 oz).[1] Storage capacities in 2010 can be as large as 256 GB[2] with steady improvements in size and price per capacity expected. Some allow 1 million write or erase cycles[3][4] and have a 10-year data retention cycle.[citation needed]

USB flash drives are often used for the same purposes as floppy disks were. They are smaller, faster, have thousands of times more capacity, and are more durable and reliable because of their lack of moving parts. Until approximately 2005, most desktop and laptop computers were supplied with floppy disk drives, but most recent equipment has abandoned floppy disk drives in favor of USB ports.

Flash drives use the USB mass storage standard, supported natively by modern operating systems such as Windows, Mac OS X, Linux, and other Unix-like systems. USB drives with USB 2.0 support can store more data and transfer faster than a much larger optical disc drive and can be read by most other systems such as the PlayStation 3.

Nothing moves mechanically in a flash drive; the term drive persists because computers read and write flash-drive data using the same system commands as for a mechanical disk drive, with the storage appearing to the computer operating system and user interface as just another drive.[4] Flash drives are very robust mechanically.

A flash drive consists of a small printed circuit board carrying the circuit elements and a USB connector, insulated electrically and protected inside a plastic, metal, or rubberized case which can be carried in a pocket or on a key chain, for example. The USB connector may be protected by a removable cap or by retracting into the body of the drive, although it is not likely to be damaged if unprotected. Most flash drives use a standard type-A USB connection allowing plugging into a port on a personal computer, but drives for other interfaces also exist.

Most USB flash drives draw their power from the USB connection, and do not require a battery. Some devices that combine the functionality of a digital audio player with flash-drive-type storage require a battery for the player function

ScOnDry sToRaGe,,

Secondary storage (or external memory) differs from primary storage in that it is not directly accessible by the CPU. The computer usually uses its input/output channels to access secondary storage and transfers the desired data using intermediate area in primary storage. Secondary storage does not lose the data when the device is powered down—it is non-volatile. Per unit, it is typically also two orders of magnitude less expensive than primary storage. Consequently, modern computer systems typically have two orders of magnitude more secondary storage than primary storage and data is kept for a longer time there.

In modern computers, hard disk drives are usually used as secondary storage. The time taken to access a given byte of information stored on a hard disk is typically a few thousandths of a second, or milliseconds. By contrast, the time taken to access a given byte of information stored in random access memory is measured in billionths of a second, or nanoseconds. This illustrates the very significant access-time difference which distinguishes solid-state memory from rotating magnetic storage devices: hard disks are typically about a million times slower than memory. Rotating optical storage devices, such as CD and DVD drives, have even longer access times. With disk drives, once the disk read/write head reaches the proper placement and the data of interest rotates under it, subsequent data on the track are very fast to access. As a result, in order to hide the initial seek time and rotational latency, data are transferred to and from disks in large contiguous blocks.

When data reside on disk, block access to hide latency offers a ray of hope in designing efficient external memory algorithms. Sequential or block access on disks is orders of magnitude faster than random access, and many sophisticated paradigms have been developed to design efficient algorithms based upon sequential and block access . Another way to reduce the I/O bottleneck is to use multiple disks in parallel in order to increase the bandwidth between primary and secondary memory.[2]

Some other examples of secondary storage technologies are: flash memory (e.g. USB flash drives or keys), floppy disks, magnetic tape, paper tape, punched cards, standalone RAM disks, and Iomega Zip drives.

The secondary storage is often formatted according to a file system format, which provides the abstraction necessary to organize data into files and directories, providing also additional information (called metadata) describing the owner of a certain file, the access time, the access permissions, and other information.

Most computer operating systems use the concept of virtual memory, allowing utilization of more primary storage capacity than is physically available in the system. As the primary memory fills up, the system moves the least-used chunks (pages) to secondary storage devices (to a swap file or page file), retrieving them later when they are needed. As more of these retrievals from slower secondary storage are necessary, the more the overall system performance is degraded.

Wednesday, May 5, 2010

StOraGe

Computer data storage, often called storage or memory, refers to computer components, devices, and recording media that retain digital data used for computing for some interval of time. Computer data storage provides one of the core functions of the modern computer, that of information retention. It is one of the fundamental components of all modern computers, and coupled with a central processing unit (CPU, a processor), implements the basic computer model used since the 1940s.
In contemporary usage, memory usually refers to a form of semiconductor storage known as random-access memory (RAM) and sometimes other forms of fast but temporary storage. Similarly, storage today more commonly refers to mass storageoptical discs, forms of magnetic storage like hard disk drives, and other types slower than RAM, but of a more permanent nature. Historically, memory and storage were respectively called main memory and secondary storage. The terms internal memory and external memory are also used.
The contemporary distinctions are helpful, because they are also fundamental to the architecture of computers in general. The distinctions also reflect an important and significant technical difference between memory and mass storage devices, which has been blurred by the historical usage of the term storage. Nevertheless, this article uses the

Random-access memory(RAM)




Random-access memory (RAM) is a form of computer data storage. Today, it takes the form of integrated circuits that allow stored data to be accessed in any order (i.e., at random). "Random" refers to the idea that any piece of data can be returned in a constant time, regardless of its physical location and whether or not it is related to the previous piece of data.[1]
By contrast, storage devices such as magnetic discs and optical discs rely on the physical movement of the recording medium or a reading head. In these devices, the movement takes longer than data transfer, and the retrieval time varies based on the physical location of the next item.
The word RAM is often associated with volatile types of memory (such as DRAM memory modules), where the information is lost after the power is switched off. Many other types of memory are RAM, too, including most types of ROM and a type of flash memory called NOR-Flash.